direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×C23.31D4, C24.149D4, C23.16Q16, C23.31SD16, C22⋊Q8⋊1C4, (C22×Q8)⋊2C4, C22.37C4≀C2, C22.7(C2×Q16), C23.489(C2×D4), (C22×C4).210D4, C22.8(C2×SD16), C22⋊C8.160C22, C22.46(C23⋊C4), (C23×C4).204C22, (C22×C4).621C23, C22.6(Q8⋊C4), C22⋊Q8.133C22, C23.101(C22⋊C4), C2.C42.498C22, (C2×C4⋊C4)⋊6C4, C4⋊C4⋊2(C2×C4), (C2×Q8)⋊1(C2×C4), C2.16(C2×C4≀C2), C2.13(C2×C23⋊C4), C2.7(C2×Q8⋊C4), (C2×C22⋊Q8).2C2, (C2×C4).1145(C2×D4), (C2×C22⋊C8).10C2, (C2×C4).86(C22⋊C4), (C2×C4).111(C22×C4), (C22×C4).195(C2×C4), C22.175(C2×C22⋊C4), (C2×C2.C42).16C2, SmallGroup(128,231)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C23.31D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=d, f2=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, ebe-1=bcd, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=bcde3 >
Subgroups: 364 in 168 conjugacy classes, 60 normal (28 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C8, C2×C4, C2×C4, Q8, C23, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×Q8, C2×Q8, C24, C2.C42, C2.C42, C22⋊C8, C22⋊C8, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22⋊Q8, C22⋊Q8, C22×C8, C23×C4, C23×C4, C22×Q8, C23.31D4, C2×C2.C42, C2×C22⋊C8, C2×C22⋊Q8, C2×C23.31D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, SD16, Q16, C22×C4, C2×D4, C23⋊C4, Q8⋊C4, C4≀C2, C2×C22⋊C4, C2×SD16, C2×Q16, C23.31D4, C2×C23⋊C4, C2×Q8⋊C4, C2×C4≀C2, C2×C23.31D4
(1 14)(2 15)(3 16)(4 9)(5 10)(6 11)(7 12)(8 13)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)
(2 30)(4 32)(6 26)(8 28)(9 24)(11 18)(13 20)(15 22)
(1 25)(2 26)(3 27)(4 28)(5 29)(6 30)(7 31)(8 32)(9 20)(10 21)(11 22)(12 23)(13 24)(14 17)(15 18)(16 19)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 5)(2 8 30 28)(3 31)(4 26 32 6)(7 27)(9 18 24 11)(10 14)(12 19)(13 22 20 15)(16 23)(17 21)(25 29)
G:=sub<Sym(32)| (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (2,30)(4,32)(6,26)(8,28)(9,24)(11,18)(13,20)(15,22), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,5)(2,8,30,28)(3,31)(4,26,32,6)(7,27)(9,18,24,11)(10,14)(12,19)(13,22,20,15)(16,23)(17,21)(25,29)>;
G:=Group( (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (2,30)(4,32)(6,26)(8,28)(9,24)(11,18)(13,20)(15,22), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,5)(2,8,30,28)(3,31)(4,26,32,6)(7,27)(9,18,24,11)(10,14)(12,19)(13,22,20,15)(16,23)(17,21)(25,29) );
G=PermutationGroup([[(1,14),(2,15),(3,16),(4,9),(5,10),(6,11),(7,12),(8,13),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32)], [(2,30),(4,32),(6,26),(8,28),(9,24),(11,18),(13,20),(15,22)], [(1,25),(2,26),(3,27),(4,28),(5,29),(6,30),(7,31),(8,32),(9,20),(10,21),(11,22),(12,23),(13,24),(14,17),(15,18),(16,19)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,5),(2,8,30,28),(3,31),(4,26,32,6),(7,27),(9,18,24,11),(10,14),(12,19),(13,22,20,15),(16,23),(17,21),(25,29)]])
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 4O | 4P | 4Q | 4R | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | - | + | |||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | D4 | SD16 | Q16 | C4≀C2 | C23⋊C4 |
kernel | C2×C23.31D4 | C23.31D4 | C2×C2.C42 | C2×C22⋊C8 | C2×C22⋊Q8 | C2×C4⋊C4 | C22⋊Q8 | C22×Q8 | C22×C4 | C24 | C23 | C23 | C22 | C22 |
# reps | 1 | 4 | 1 | 1 | 1 | 2 | 4 | 2 | 3 | 1 | 4 | 4 | 8 | 2 |
Matrix representation of C2×C23.31D4 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 10 | 0 | 0 | 0 | 0 |
12 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 5 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 16 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
16 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[0,12,0,0,0,0,10,10,0,0,0,0,0,0,12,12,0,0,0,0,5,12,0,0,0,0,0,0,0,16,0,0,0,0,4,0],[16,16,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,4] >;
C2×C23.31D4 in GAP, Magma, Sage, TeX
C_2\times C_2^3._{31}D_4
% in TeX
G:=Group("C2xC2^3.31D4");
// GroupNames label
G:=SmallGroup(128,231);
// by ID
G=gap.SmallGroup(128,231);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,232,1123,1018,248,1971]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=d,f^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=b*c*d*e^3>;
// generators/relations